Clinical Research – Thermography Studies

Special thanks to Mr. Graham J. Rockley of Ashwin Systems Int’l. Inc., for compiling this research material www.thermology.com

Breast Disease:

The Breast Journal, Volume 4, Number 4, 1998, 245-251
Infrared Imaging of the Breast: Initial Reappraisal Using High-Resolution Digital Technology in 100 Successive Cases of Stage I and II Breast Cancer.
Department of Oncology, St. Mary’s Hospital, Montreal, Quebec; Department of Radiotherapy, London Cancer Center, London, Ontario; and Ville Marie Breast and Oncology Center, Montreal, Quebec, Canada.
Our initial experience would suggest that, when done concomitantly with clinical exam and mammography, high-resolution digital infrared imaging can provide additional safe, practical, and objective information. Our initial reappraisal would also suggest that infrared imaging, based more on process than structural changes and requiring neither contact, compression, radiation nor venous access, can provide pertinent and practical complementary information to both clinical exam and mammography, our current primary basic detection modalities.

Breast Cancer 2000 Apr 25;7(2):142-148
Skin Reactions after Breast-conserving Therapy and Prediction of Late Complications Using Physiological Functions.
Sekine H, Kobayashi M, Honda C, Aoki M, Nakagawa M, Kanehira C; Department of Radiology, Division of Radiotherapy, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
BACKGROUND: The temperature of the skin remains elevated long after breast-conserving treatment with irradiation, perhaps because evaporative cooling is impaired. We investigated physiological changes of the irradiated skin and reevaluated the radiosensitivity of sweat glands on a functional basis to determine whether severe complications can be predicted. METHODS: Breast and axillary skin temperatures were measured with thermography and sweat production in response to local thermal stimuli was measured on the basis of changes in electrical skin resistance with a bridge circuit in 45 women before, during, and after breast irradiation for breast cancer. RESULTS: Breast and axillary temperatures were significantly increased after irradiation. In response to cutaneous thermal stimuli, the electric skin resistance of nonirradiated areas decreased significantly because of sweating, but that of irradiated areas was unchanged. CONCLUSION: Impairment of sweating may play an important role in skin damage after irradiation. Although glandular tissue is not usually radiosensitive, the results of our functional assessment suggest that sweat glands are more radiosensitive than expected.

Int J Fertil Womens Med 2001 Sep-Oct;46(5):238-47
Circadian rhythm chaos: a new breast cancer marker.
Keith LG, Oleszczuk JJ, Laguens M.; Department of Obstetrics and Gynecology, Northwestern University Medical School, Chicago, Illinois, USA.
The most disappointing aspect of breast cancer treatment as a public health issue has been the failure of screening to improve mortality figures. Since treatment of late-stage cancer has indeed advanced, mortality can only be decreased by improving the rate of early diagnosis. From the mid-1950s to the mid-1970s, it was expected that thermography would hold the key to breast cancer detection, as surface temperature increases overlying malignant tumors had been demonstrated by thermographic imaging. Unfortunately, detection of the 1-3 degrees C thermal differences failed to bear out its promise in early identification of cancer. In the intervening two-and-a-half decades, three new factors have emerged: it is now apparent that breast cancer has a lengthy genesis; a long-established tumor-even one of a certain minimum size-induces increased arterial/capillary vascularity in its vicinity; and thermal variations that characterize tissue metabolism are circadian (“about 24 hours”) in periodicity. This paper reviews the evidence for a connection between disturbances of circadian rhythms and breast cancer. Furthermore, a scheme is proposed in which circadian rhythm “chaos” is taken as a signal of high risk for breast cancer even in the absence of mammographic evidence of neoplasm or a palpable tumor. Recent studies along this line suggest that an abnormal thermal sign, in the light of our present knowledge of breast cancer, is ten times as important an indication as is family history data.

J Biomech Eng. 2004 Apr;126(2):204-11.
Effect of forced convection on the skin thermal expression of breast cancer.
Hu L, Gupta A, Gore JP, Xu LX.; School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
A bioheat-transfer-based numerical model was utilized to study the energy balance in healthy and malignant breasts subjected to forced convection in a wind tunnel. Steady-state temperature distributions on the skin surface of the breasts were obtained by numerically solving the conjugate heat transfer problem. Parametric studies on the influences of the airflow on the skin thermal expression of tumors were performed. It was found that the presence of tumor may not be clearly shown due to the irregularities of the skin temperature distribution induced by the airflow field. Nevertheless, image subtraction techniques could be employed to eliminate the effects of the flow field and thermal noise and significantly improve the thermal signature of the tumor on the skin surface. Inclusion of the possible skin vascular response to cold stress caused by the airflow further enhances the signal, especially for deeply embedded tumors that otherwise may not be detectable.

Eur J Appl Physiol. 2004 Oct;93(1-2):245-51.
Infrared thermography for examination of skin temperature in the dorsal hand of office workers.
Gold JE, Cherniack M, Buchholz B. Department of Work Environment, University of Massachusetts Lowell, 1 University Avenue, MA 01854, Lowell, USA, Judith_Gold@uml.edu.
Reduced blood flow may contribute to the pathophysiology of upper extremity musculoskeletal disorders (UEMSD), such as tendinitis and carpal tunnel syndrome. The study objective was to characterize potential differences in cutaneous temperature, among three groups of office workers assessed by dynamic thermography following a 9-min typing challenge: those with UEMSD, with ( n=6) or without ( n=10) cold hands exacerbated by keyboard use, and control subjects ( n=12). Temperature images of the metacarpal region of the dorsal hand were obtained 1 min before typing, and during three 2-min sample periods [0-2 min (early), 3-5 min (middle), and 8-10 min (late)] after typing. Mean temperature increased from baseline levels immediately after typing by a similar magnitude, 0.7 (0.3) degrees C in controls and 0.6 (0.2) degrees C in UEMSD cases without cold hands, but only by 0.1 (0.3) degrees C in those with cold hands. Using paired t-tests for within group comparisons of mean dorsal temperature between successive imaging periods, three patterns of temperature change were apparent during 10 min following typing. Controls further increased mean temperature by 0.1 degrees C ( t-test, P=0.001) at 3-5 min post-typing before a late temperature decline of -0.3 degrees C ( t-test, P=0.04), while cases without cold hands showed no change from initial post-typing mean temperature rise during middle or late periods. In contrast, subjects with keyboard-induced cold hands had no change from initial post-typing temperature until a decrease at the late period of -0.3 degrees C ( t-test, P=0.06). Infrared thermography appears to distinguish between the three groups of subjects, with keyboard-induced cold hand symptoms presumably due, at least partially, to reduced blood flow.

J Urol. 2004 Oct; 172(4 Pt 1):1239-40
Physical examination may miss the diagnosis of bilateral varicocele: a comparative study of 4 diagnostic modalities.
Gat Y, Bachar GN, Zukerman Z, Belenky A, Gorenish M. Andrology Unit, Department of Obstetrics and Gynecology, Rabin Medical Center, Beilinson Campus, Petah Tiqva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
PURPOSE: We evaluated the sensitivity of 3 noninvasive methods for detecting left and right varicoceles. MATERIALS AND METHODS: Three noninvasive methods for the detection of varicocele in the left and right internal spermatic veins were evaluated in 214 infertile men, namely, physical examination, scrotal contact thermography and ultrasound Doppler. Venography was used as the reference diagnosis. RESULTS: Varicocele was detected in 195 patients (91.1%), on the left side in 37 (19%), on the right side in 3 (1.5%) and bilaterally in 155 (79.5%). Scrotal contact thermography using varicoscreen proved to be the most accurate method. Sensitivity, specificity, accuracy and positive predictive value were 98.9%, 66.6%, 98.5% and 100%, respectively, for left varicocele, and 95.6%, 91.6%, 94.9% and 98%, respectively, for right varicocele. Doppler sonography was associated with the highest number of false-positive results. Accuracy in evaluating retrograde flow was lowest for both sides for physical examination and highest for the combination of Doppler sonography and contact thermography, with a sensitivity, specificity, accuracy and positive predictive value of 100%, 33.3%, 99.0% and 98.9%, respectively, for the left side, and 97.4%, 58.3%, 90.3% and 91.1%, respectively, for the right side. In 165 (85%) of the 195 patients who underwent internal spermatic vein embolization sperm parameters were improved. CONCLUSIONS: The present study yielded 2 major findings. Thermography is more sensitive and accurate for the detection of varicocele than Doppler ultrasound and physical examination, and it can be used for screening as a single modality in infertile men. Doppler ultrasound and thermography are complementary and their combined use yields the highest sensitivity and accuracy.

Rheumatology ( Oxford ). 2004 Jul;43(7):915-9. Epub 2004 May 04.
Assessment of hand osteoarthritis: correlation between thermographic and radiographic methods.
Varju G, Pieper CF, Renner JB, Kraus VB. Box 3416, Duke University Medical Center, Durham, NC 27710, USA.
OBJECTIVE: Anatomical stages of digital osteoarthritis (OA) have been characterized radiographically as progressing through sequential phases from normal to osteophyte formation, progressive loss of joint space, joint erosion and joint remodelling. Our study was designed to evaluate a physiological parameter, joint surface temperature, measured with computerized digital infrared thermal imaging, and its association with sequential stages of radiographic OA (rOA). METHODS: Thermograms, radiographs and digital photographs were taken of both hands of 91 subjects with nodal hand OA. Temperature measurements were made on digits 2-5 at distal interphalangeal (DIP) joints, proximal interphalangeal (PIP) joints and metacarpophalangeal (MCP) joints (2184 joints in total). We fitted a repeated measures ANCOVA model to analyse the effects of rOA on temperature, with handedness, joint group, digit and NSAID use as covariates. RESULTS: The reliability of the thermoscanning procedure was high (generalizability coefficient 0.899 for two scans performed 3 h apart). The mean joint temperature decreased with increasing rOA severity, defined by the Kellgren-Lawrence (KL) scale. The mean temperature of KL0 joints was significantly different from that of each of the other KL grades (P </= 0.002). After adjustment for the other covariates, there was a strong association of rOA with joint surface temperature (P<0.001). The earliest discernible radiographic disease (KL1) was associated with a higher surface temperature than KL0 joints (P = 0.01) and a higher surface temperature than any other KL grade. Joint erosions were not associated with a change in joint temperature. CONCLUSION: Joint surface temperature varied with the severity of rOA. Joints were warmer than normal at the onset of OA. As the severity of rOA worsened, joint surface temperature declined. These data support the supposition that digital OA progresses in phases initiated by an inflammatory process. The cooler surface temperatures in later stages of the disease may in part explain the paucity of symptoms reported by patients with hand OA.

Dent Mater J. 2003 Dec;22(4):436-43.
Application of thermography in dentistry–visualization of temperature distribution on oral tissues.
Komoriyama M, Nomoto R, Tanaka R, Hosoya N, Gomi K, Iino F, Yashima A, Takayama Y, Tsuruta M, Tokiwa H, Kawasaki K, Arai T, Hosoi T, Hirashita A, Hirano S.; Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
The purpose of this study was to devise and propose appropriate conditions for the photographing of thermal images in the oral cavity and to evaluate which thermography techniques can be applied to dentistry by evaluating the differences in temperature among oral tissues. Thermal images of oral cavities of 20 volunteers in normal oral condition were taken according to the guidelines of the Japanese Society of Thermography, with five added items for oral observation. The use of a mirror made it possible to take thermal images of the posterior portion or palate. Teeth, free gingiva, attached gingiva and alveolar mucosa were identified on thermal images. There were differences in temperature between teeth, free gingiva, attached gingiva and alveolar mucosa. These were nearly in agreement with the anatomical view. Thermography need no longer be restricted to the anterior portion using a mirror, and can now be applied to the dental region.

Equine Vet J. 2004 May;36(4):306-12.
Reliability and repeatability of thermographic examination and the normal thermographic image of the thoracolumbar region in the horse.
Tunley BV, Henson FM; Queen’s Veterinary School Hospital, Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, Cambridgeshire CB3 0ES, UK.
REASONS FOR PERFORMING STUDY: Thermographic imaging is an increasingly used diagnostic tool. When performing thermography, guidelines suggest that horses should be left for 10-20 mins to ‘acclimatise’ to the thermographic imaging environment, with no experimental data to substantiate this recommendation. In addition, little objective work has been published on the repeatability and reliability of the data obtained. Thermography has been widely used to identify areas of abnormal body surface temperature in horses with back pathology; however, no normal data is available on the thermographic ‘map’ of the thoracolumbar region with which to compare horses with suspected pathology. OBJECTIVES: To i) investigate whether equilibration of the thermographic subject was required and, if so, how long it should take, ii) investigate what factors affect time to equilibration, iii) investigate the repeatability and reliability of the technique and iv) generate a topographic thermographic ‘map’ of the thoracolumbar region. METHODS: A total of 52 horses were used. The following investigations were undertaken: thermal imaging validation, i.e. detection of movement around the baseline of an object of constant temperature; factors affecting equilibration; pattern reproducibility during equilibration and over time (n = 25); and imaging of the thoracolumbar region (n = 27). RESULTS: A 1 degrees C change was detected in an object of stable temperature using this detection system, i.e the ‘noise’ in the system. The average time taken to equilibrate, ie. reach a plateau temperature, was 39 mins (40.2 in the gluteal region, 36.2 in lateral thoracic region and 40.4 in metacarpophalangeal region). Only 19% of horses reached plateau within 10-20 mins. Of the factors analysed hair length and difference between the external environment and the internal environment where the measurements were being taken both significantly affected time to plateau (P<0.05). However, during equilibration, the thermographic patterns obtained did not change, nor when assessed over a 7 day period. A ‘normal’ map of the surface temperature of the thoracolumbar region has been produced, demonstrating that the midline is the hottest, with a fall off of 3 degrees C either side of the midline. CONCLUSIONS: This study demonstrates that horses may not need time to equilibrate prior to taking thermographic images and that thermographic patterns are reproducible over periods up to 7 days. A topographical thermographic ‘map’ of the thoracolumbar region has been obtained. POTENTIAL RELEVANCE: Clinicians can obtain relevant thermographic images without the need for prior equilibration and can compare cases with thoracolumbar pathology to a normal topographic thermographic map.

Physiol Meas. 2003 Aug;24(3):717-25.
Comparison of digital infrared thermal imaging (DITI) with contact thermometry: pilot data from a sleep research laboratory.
van den Heuvel CJ, Ferguson SA, Dawson D, Gilbert SS.; The Centre for Sleep Research, University of South Australia, Level 5 Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia. cameron.vdh@unisa.edu.au
Body temperature regulation is associated with changes in sleep propensity; therefore, sleep research often necessitates concomitant assessment of core and skin surface temperatures. Attachment to thermistors may limit the range of movement and comfort, introducing a potential confound that may prolong sleep initiation or increase wakefulness after sleep onset. It has been suggested that contact thermometry may artificially increase temperatures due to insulation. We report here on a method of remote sensing skin temperatures using a digital infrared thermal imaging (DITI) system, which can reduce these potential confounds. Using data from four healthy young adult volunteers (age = 26.8 +/- 2.2 years; mean +/- SEM), we compared measures of skin temperature using a DITI system with contact thermometry methods already in use in our sleep laboratory. A total of 416 skin temperature measurements (T(sk)) were collected from various sites, resulting in an overall correlation coefficient of R = 0.99 (p < 0.0001) between both methods. Regression analyses for individuals resulted in correlation coefficients between 0.80 and 0.97. These pilot results suggest that DITI can assess skin surface temperatures as accurately as contact thermometry, provided the interest is in relative and not absolute temperature changes. This and some other important limitations are discussed in more detail hereafter.

Herz. 2003 Sep;28(6):505-12.
Intracoronary thermography.
Schmermund A, Rodermann J, Erbel R. Department of Cardiology, University Clinic Essen , Germany . Axel.
Arteriosclerosis is an inflammatory disease. Inflammatory processes play a role in the initiation of plaque development and the early stages of the disease as well as in complex plaques and complications such as intraarterial thrombosis. A method to detect inflammation in coronary arteries has the potential to characterize both local and systemic activation of arteriosclerotic plaque disease. It could help to define in more detail what constitutes a vulnerable plaque or vulnerable vessel and thus improve the prediction of acute coronary syndromes. Intracoronary thermography records a cardinal sign of inflammation. Heat is probably produced by (activated) macrophages. Experimental work has suggested that thermal heterogeneity is present in arteriosclerotic plaques and that increased temperature is found at the site of inflammatory cellular-macrophage-infiltration. Preliminary experience in patients undergoing coronary angiography has demonstrated that it is safe and feasible to perform intracoronary thermography using various systems. A graded relationship between thermal heterogeneity and clinical symptoms has been reported, with the greatest temperature elevation in acute myocardial infarction. Increases in thermal heterogeneity appeared to be associated with a comparably unfavorable long-term prognosis. Intracoronary thermography has the potential to provide insights into location and extent of inflammation as well as the prognostic consequences. Currently, this novel method and the underlying concepts are extensively evaluated.

South Med J. 2003 Nov;96(11):1142-7.
Imaging of the vulnerable plaque: new modalities.
Bhatia V, Bhatia R, Dhindsa S, Dhindsa M.; Department of Internal Medicine, State University of New York at Buffalo, Buffalo, NY, USA.
Atherosclerosis is currently considered to be an inflammatory and thus a systemic disease affecting multiple arterial beds. Recent advances in intravascular imaging have shown multiple sites of atherosclerotic changes in coronary arterial wall. Traditionally, angiography has been used to detect and characterize atherosclerotic plaque in coronary arteries, but recently it has been found that plaques that are not significantly stenotic on angiography cause acute myocardial infarction. As a result, newer imaging and diagnostic modalities are required to predict which of the atherosclerotic plaque are prone to rupture and hence distinguish “stable” and “vulnerable” plaques. Intravascular ultrasound can identify multiple plaques that are not seen on coronary angiography. Thermography has shown much promise and is based on the concept that the inflammatory plaques are associated with increased temperature and can also identify “vulnerable patients.” Of all these newer modalities, magnetic resonance imaging has shown the most promise in identification and characterization of vulnerable plaques. In this article, we review the newer coronary artery imaging modalities and discuss the limitations of traditional coronary angiography.

J Neurosurg 2002 Dec;97(6):1460-71
Vision of the future: initial experience with intraoperative real-time
high-resolution dynamic infrared imaging. Technical note.
Ecker RD, Goerss SJ, Meyer FB, Cohen-Gadol AA, Britton JW, Levine JA. Department of Neurological Surgery, Mayo Clinic and Foundation, Rochester, Minnesota, USA.
High-resolution dynamic infrared (DIR) imaging provides intraoperative real-time physiological, anatomical, and pathological information; however, DIR imaging has rarely been used in neurosurgical patients. The authors report on their initial experience with intraoperative DIR imaging in 30 such patients. A novel, long-wave (8-10 micron), narrow-band, focal-plane-array infrared photodetector was incorporated into a camera system with a temperature resolution of 0.006 degrees C, providing 65,000 pixels/frame at a data acquisition rate of 200 frames/second. Intraoperative imaging of patients was performed before and after surgery. Infrared data were subsequently analyzed by examining absolute differences in cortical temperatures, changes in temperature over time, and infrared intensities at varying physiological frequencies. Dynamic infrared imaging was applied in a variety of neurosurgical cases. After resection of an arteriovenous malformation, there was postoperative hyperperfusion of the surrounding brain parenchyma, which was consistent with a loss of autoregulation. Bypass patency and increased perfusion of adjacent brain were documented during two of three extracranial-intracranial bypasses. In seven of nine patients with epilepsy the results of DIR imaging corresponded to seizure foci that had been electrocorticographically mapped preoperatively. Dynamic infrared imaging demonstrated the functional cortex in four of nine patients undergoing awake resection and cortical stimulation. Finally, DIR imaging exhibited the distinct thermal footprints of 14 of 16 brain tumors. Dynamic infrared imaging may prove to be a powerful adjunctive intraoperative diagnostic tool in the neurosurgical imaging armamentarium. Real-time assessment of cerebral vessel patency and cerebral perfusion are the most direct applications of this technology. Uses of this imaging modality in the localization of epileptic foci, identification of functional cortex during awake craniotomy, and determination of tumor border and intraoperative brain shift are avenues of inquiry that require further investigation.

Gynakol Geburtshilfliche Rundsch 2003;43(1):31-5
Infrared thermography in newborns: the first hour after birth.
Christidis I, Zotter H, Rosegger H, Engele H, Kurz R, Kerbl R. Department of Pediatrics, University of Graz, Austria.
“OBJECTIVE: It was the aim of this study to investigate the surface temperature in newborns within the first hour after delivery. Furthermore, the influence of different environmental conditions with regard to surface temperature was documented. METHODS: Body surface temperature was recorded under several environmental conditions by use of infrared thermography. 42 newborns, all delivered at term and with weight appropriate for date, were investigated under controlled conditions. RESULTS: The surface temperature immediately after birth shows a uniform picture of the whole body; however, it is significantly lower than the core temperature. Soon after birth, peripheral sites become cooler whereas a constant temperature is maintained at the trunk. Bathing in warm water again leads to a more even temperature profile. Radiant heaters and skin-to-skin contact with the mother are both effective methods to prevent heat loss in neonates. CONCLUSIONS: Infrared thermography is a simple and reliable tool for the measurement of skin temperature profiles in neonates. Without the need of direct skin contact, it may be helpful for optimizing environmental conditions at delivery suites and neonatal intensive-care units.” Ref. S. Karger AG, Basel

J Perinat Neonatal Nurs 2000 Mar;13(4):50-66
Neoteric physiologic and immunologic methods for assessing early-onset neonatal sepsis
Horns KM; College of Nursing, NBICU, University of Utah, Salt Lake City, USA.
Septicemia is a growing problem among low birth weight infants. Early identification and treatment of sepsis in these infants would help to reduce the high mortality and morbidity seen with this disorder. Newer techniques may make earlier diagnosis a reality. In the following review article, early-onset sepsis in the premature infant is described, specifically focusing on the neonatal inflammatory response, neutropenia, and its somewhat inconsistent and delayed role as a marker for sepsis risk factors. Physiological signs, laboratory indicators, skin temperature, peripheral perfusion, and the interaction of macro-environmental factors are also discussed. Newer (neoteric) immunologic and cytokine markers of sepsis are reviewed. Finally, thermography, a noninvasive bioinstrument measuring vasoactive peripheral perfusion, which has potential for early recognition of neonatal septicemia, is described.

Curr Opin Urol 2002 Mar;12(2):149-53
Scrotal imaging.
Watanabe Y. Department of Radiology, Kurashiki Central Hospital, Kurashiki, Japan.
Color Doppler ultrasound has been the mainstay for the evaluation of the scrotum in a variety of clinical settings. However, ultrasonography results are not always accurate or conclusive. Despite the high cost and limited availability, magnetic resonance imaging with the dynamic contrast-enhanced subtraction technique provides accurate information on morphology as well as blood flow. Infrared scrotal thermography increases accuracy in the diagnosis of varicocele. This article attempts to summarize recent advances in scrotal imaging with regard to testicular and extratesticular disorders.

Dis Colon Rectum 2000 Sep;43(9):1319-21
Thermal imaging in the detection of bowel ischemia. Brooks JP, Perry WB, Putnam AT, Karulf RE Department of Colorectal Surgery, Wilford Hall Medical Center, San Antonio, Texas, USA.
PURPOSE: The aim of this study was to introduce thermal imaging in the intraoperative detection of bowel ischemia by comparing thermal imaging with conventional techniques in detecting acutely ischemic bowel, using histologic evidence for intestinal necrosis as the standard. METHODS: A prospective study was performed using a porcine model. Laparotomy was performed on four pigs under general anesthesia. A 25-cm segment of mid jejunum was tagged with proximal and distal sutures, and its mesentery was ligated and divided. Thermal imaging, visual inspection, Doppler ultrasound, and fluorescence with Wood’s lamp after fluorescein were used to estimate the extent of bowel ischemia five minutes after ligation of the mesentery. Measurements were taken in reference to both the proximal and distal tags to obtain two data points per animal for each method. After two hours of warm ischemia, the jejunum was harvested and sectioned longitudinally. Comparisons were made between the estimated region of necrosis for each method and microscopic evidence of necrosis. RESULTS: Visual inspection was the only method unable to detect a difference between vascularized and devascularized bowel for each of the eight data points. Fluorescein dye missed 3 cm of ischemic bowel. Doppler ultrasound and thermal imaging were 100 percent sensitive for necrotic bowel, with thermal imaging overestimating necrosis to a greater extent than Doppler ultrasound. The positive predictive value of fluorescein dye, Doppler ultrasound, and thermal imaging for determining nonviable bowel was 91.8, 80.8, and 69.5 percent, respectively. CONCLUSIONS: Thermal imaging has the potential to be a useful adjunct in the intraoperative determination of bowel ischemia. Further studies are indicated to study this technique.

Dis Colon Rectum 2000 Sep;43(9):1319-21
Thermal imaging in the detection of bowel ischemia. Brooks JP, Perry WB, Putnam AT, Karulf RE Department of Colorectal Surgery, Wilford Hall Medical Center, San Antonio, Texas, USA.
PURPOSE: The aim of this study was to introduce thermal imaging in the intraoperative detection of bowel ischemia by comparing thermal imaging with conventional techniques in detecting acutely ischemic bowel, using histologic evidence for intestinal necrosis as the standard. METHODS: A prospective study was performed using a porcine model. Laparotomy was performed on four pigs under general anesthesia. A 25-cm segment of mid jejunum was tagged with proximal and distal sutures, and its mesentery was ligated and divided. Thermal imaging, visual inspection, Doppler ultrasound, and fluorescence with Wood’s lamp after fluorescein were used to estimate the extent of bowel ischemia five minutes after ligation of the mesentery. Measurements were taken in reference to both the proximal and distal tags to obtain two data points per animal for each method. After two hours of warm ischemia, the jejunum was harvested and sectioned longitudinally. Comparisons were made between the estimated region of necrosis for each method and microscopic evidence of necrosis. RESULTS: Visual inspection was the only method unable to detect a difference between vascularized and devascularized bowel for each of the eight data points. Fluorescein dye missed 3 cm of ischemic bowel. Doppler ultrasound and thermal imaging were 100 percent sensitive for necrotic bowel, with thermal imaging overestimating necrosis to a greater extent than Doppler ultrasound. The positive predictive value of fluorescein dye, Doppler ultrasound, and thermal imaging for determining nonviable bowel was 91.8, 80.8, and 69.5 percent, respectively. CONCLUSIONS: Thermal imaging has the potential to be a useful adjunct in the intraoperative determination of bowel ischemia. Further studies are indicated to study this technique.Yonsei Med J 1999 Oct;40(5):401-12
Thermatomal changes in cervical disc herniations. Zhang HY, Kim YS, Cho YE; Department of Neurosurgery, Yongdong Severance Hospital, Yonsei College of Medicine, Seoul, Korea. hyzhang@unitel.co.kr
Subjective symptoms of a cool or warm sensation in the arm could be shown objectively by using of thermography with the detection of thermal change in the case of radiculopathy, including cervical disc herniation (CDH). However, the precise location of each thermal change at CDH has not been established in humans. This study used digital infrared thermographic imaging (DITI) for 50 controls and 115 CDH patients, analyzed the data statistically with t-test, and defined the areas of thermatomal change in CDH C3/4, C4/5, C5/6, C6/7 and C7/T1. The temperature of the upper trunk and upper extremities of the control group ranged from 29.8 degrees C to 32.8 degrees C. The minimal abnormal thermal difference in the right and left upper extremities ranged from 0.1 degree C to 0.3 degree C in 99% confidence interval. If delta T was more than 0.1 degree C, the anterior middle shoulder sector was considered abnormal (p < 0.01). If delta T was more than 0.3 degree C, the medial upper aspect of the forearm and dorsal aspect of the arm, some areas of the palm and anterior part of the fourth finger, and their opposite side sectors and all dorsal aspects of fingers were considered abnormal (p < 0.01). Other areas except those mentioned above were considered abnormal if delta T was more than 0.2 degree C (p < 0.01). In p < 0.05, thermal change in CDH C3/4 included the posterior upper back and shoulder and the anterior shoulder. Thermal change in CDH C4/5 included the middle and lateral aspect of the triceps muscle, proximal radial region, the posterior medial aspect of the forearm and distal lateral forearm. Thermal change in CDH C5/6 included the anterior aspects of the thenar, thumb and second finger and the anterior aspects of the radial region and posterior aspects of the pararadial region. Thermal change in CDH C6/7 included the posterior aspect of the ulnar and palmar region and the anterior aspects of the ulnar region and some fingers. Thermal change in CDH C7/T1 included the scapula and posterior medial aspect of the arm and the anterior medial aspect of the arm. The areas of thermal change in each CDH included wider sensory dermatome and sympathetic dermatome There was a statistically significant change of temperature in the areas of thermal change in all CDH patients. In conclusion, the areas of thermal change in CDH can be helpful in diagnosing the level of disc protrusion and in detecting the symptomatic level in multiple CDH patients.

Nat Biotechnol 1999 Aug;17(8):813-6
Presymptomatic visualization of plant-virus interactions by thermography. Chaerle L, Van Caeneghem W, Messens E, Lambers H, Van Montagu M, Van Der Straeten D; Laboratorium voor Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
Salicylic acid (SA), produced by plants as a signal in defense against induces metabolic heating mediated by alternative respiration in flowers of thermogenic plants, and, when exogenously applied, increases leaf temperature in nonthermogenic plants. We have postulated that the latter phenomenon would be detectable when SA is synthesized locally in plant leaves. Here, resistance to tobacco mosaic virus (TMV) was monitored thermographically before any disease symptoms became visible on tobacco leaves. Spots of elevated temperature that were confined to the place of infection increased in intensity from 8 h before the onset of visible cell death, and remained detectable as a halo around the ongoing necrosis. Salicylic acid accumulates during the prenecrotic phase in TMV-infected tobacco and is known to induce stomatal closure in certain species. We show that the time course of SA accumulation correlates with the evolution of both localized thermal effect and stomatal closure. Since the contribution of leaf respiration is marginal, we concluded that the thermal effect results predominantly from localized, SA-induced stomatal closure. The presymptomatic temperature increase could be of general significance in incompatible plant-pathogen interactions.

Laryngorhinootologie 1998 Dec;77(12):677-81
[Thermographic study of temperature gradient during ear surgery intervention].[Article in German] Pau HW, Fichelmann J, Wild W; HNO-Universitatsklinik und Poliklinik Rostock.
BACKGROUND: During middle ear surgery manipulations like burring, cooling with water, suction or even screwing cause changes of temperature which should be known to the surgeon. METHOD: An infrared thermovision device was introduced for registration. RESULTS: Thermography is an easy way for continuously recording thermic effects during surgery. If sufficient cooling is guaranteed, no temperatures high enough to cause tissue damage or functional defects could be observed. CONCLUSIONS: Adequate cooling provided, thermal injuries during ear surgery can be neglected. Thermography is an easy method for answering such questions, not only in ear surgery but also in other medical fields.

J Hand Ther 1999 Oct-Dec;12(4):284-90
Reliability and normal values for measuring the skin temperature of the hand with an infrared tympanic thermometer: a pilot study. Oerlemans HM, Graff MJ, Dijkstra-Hekkink JB, de Boo T, Goris RJ, Oostendorp RA; Allied Health Services, University Hospital Nijmegen, The Netherlands.
Recording asymmetry in skin temperature between symmetric body areas is useful in monitoring diseases that alter skin temperature. This pilot study checked the reported high reliability of recording skin temperature of the hands with an infrared tympanic thermometer, provided insight into the relationship between dorsal and palmar temperature differences, and assessed the agreement between these data and normative data obtained from thermograms. Using an infrared tympanic thermometer, two independent assessors measured the temperature of 13 asymptomatic, right-handed subjects (mean age, 30 years; range, 21 to 44 years). Both test-retest and interobserver reliabilities were high. Skin temperature of the hand differed with the site where it was measured; differences between sites changed over time. The mean absolute differences in skin temperature between dorsal and palmar aspects of the hands were 0.30 degrees C and 0.25 degrees C, respectively. These data match normative values reported in the literature for infrared thermograms.

Rev Neurol 1999 Mar 16-31;28(6):535-43
[Neurophysiological study of thin myelinated and unmyelinated fibers]. [Article in Spanish] Espinosa ML, Santiago S, Guzman JJ, Prieto J, Ferrer T; Laboratorio de SNA, Hospital General La Paz, Madrid, Espana.
INTRODUCTION: Standard neurophysiological techniques evaluate thick myelinated fibers. Yet, peripheral nerves are equally composed of thin myelinated and unmyelinated fibers. The latter are responsible for autonomic function as well as temperature and pain perception. DEVELOPMENT: Microneurographic studies are restricted to investigation laboratories. Since the techniques are complex and invasive, their performance is still poor for clinical purposes and some of the components to be analyzed, such as cardiovagal, cannot be directly recorded. The clinical need to evaluate the functions regulated by the autonomic nervous system (ANS) had led to devising a series of tests which, in most cases, rely on reflex responses evoked by already known standardize stimuli. The battery chosen has to be non invasive, reproducible, specific, providing relevant data to the investigated function, with a readily available technology, which has to be managed being aware of the physiological and pathological factors that might bear an influence on the results. The recent development of heart rate blood pressure power spectral analysis, provides a new interesting insight for quantification of ANS abnormalities. The study of thermography and thermometry of body surface brings forward evidence on the activity of other thin and unmyelinated fibers components of the peripheral nerve spectrum. CONCLUSION: The adequate management of the above mentioned tests gives rise to a more extensive and appropriate knowledge of the whole peripheral nerve fiber spectrum.

 Rev Neurol 1999 Mar 16-31;28(6):535-43
[Neurophysiological study of thin myelinated and unmyelinated fibers]. [Article in Spanish] Espinosa ML, Santiago S, Guzman JJ, Prieto J, Ferrer T; Laboratorio de SNA, Hospital General La Paz, Madrid, Espana.
INTRODUCTION: Standard neurophysiological techniques evaluate thick myelinated fibers. Yet, peripheral nerves are equally composed of thin myelinated and unmyelinated fibers. The latter are responsible for autonomic function as well as temperature and pain perception. DEVELOPMENT: Microneurographic studies are restricted to investigation laboratories. Since the techniques are complex and invasive, their performance is still poor for clinical purposes and some of the components to be analyzed, such as cardiovagal, cannot be directly recorded. The clinical need to evaluate the functions regulated by the autonomic nervous system (ANS) had led to devising a series of tests which, in most cases, rely on reflex responses evoked by already known standardize stimuli. The battery chosen has to be non invasive, reproducible, specific, providing relevant data to the investigated function, with a readily available technology, which has to be managed being aware of the physiological and pathological factors that might bear an influence on the results. The recent development of heart rate blood pressure power spectral analysis, provides a new interesting insight for quantification of ANS abnormalities. The study of thermography and thermometry of body surface brings forward evidence on the activity of other thin and unmyelinated fibers components of the peripheral nerve spectrum. CONCLUSION: The adequate management of the above mentioned tests gives rise to a more extensive and appropriate knowledge of the whole peripheral nerve fiber spectrum.

Diabetes Res Clin Pract 1998 Oct;42(1):29-34
Peripheral vascular reactions to smoking–profound vasoconstriction by atherosclerosis. Fushimi H, Kubo M, Inoue T, Yamada Y, Matsuyama Y, Kameyama M; Department of Medicine, Sumitomo Hospital, Osaka, Japan.
Analyses of direct effects of smoking on peripheral arteries were done using thermography, blood fluorometry and echography on 97 habitual smoker-diabetics without triopathy. There were found to be four types of thermographic changes following smoking, which varied according to the degree of atherosclerosis of the artery. The smoking-stimulated thermographic pattern in the control group of healthy volunteers was a small wavy pattern, fluctuating along the base line every few minutes within a temperature range of 1.0-1.5 degrees C (N type). In diabetics, four types of thermographic patterns were produced: normal (N) type as control, increasing (I) type (increasing in skin temperature), decreasing (D) type (decreasing in temperature), and F type (no changes in temperature). The most significant finding was the decreasing pattern which closely connected to clinical and echographic aspects of macroangiopathic changes. The increasing type was characterized by a paradoxical increase in temperature after smoking in order diabetics with good blood glucose control and who were less atherosclerotic. Blood flow was correlated to the skin temperature at the base state and changes after smoking. Moreover, blood flow changes measured by fluorometry suggest that vasoconstriction or vasodilatation following smoking took place. These results suggest that this smoking test might be a good tool for diagnosing for the degree of atherosclerosis and for its following up.

Clin Physiol 1991 Mar;11(2):135-41
Thermography and laser-Doppler flowmetry for monitoring changes in finger skin blood flow upon cigarette smoking. Bornmyr S, Svensson H.; Department of Clinical Physiology, Allmanna Sjukhuset, Malmo, Sweden.
Haemodynamic changes after smoking two 1.1 mg nicotine cigarettes were monitored in 24 smokers on two different occasions. Smoking caused an increase in heart rate and arterial blood pressure, whereas finger temperature as measured by thermography and finger skin blood flow as measured by laser-Doppler flowmetry (LDF) decreased. Lowest values were seen within 15 min by LDF, and after 30 min by thermography. Changes in the two methods correlated closely, however, when maximum responses during a 45-min period after smoking were compared. The wider distribution of LDF values would seem to be due to the small measuring volume which is susceptible to differences in vascular anatomy and reactivity. In both methods, responses showed a high degree of reproducibility.

Hand-Arm Vibration Syndrome
 
Br J Surg 1999 May;86(5):694-5
Vascular surgical society of Great Britain and Ireland : analysis of cold provocation thermography in the objective diagnosis of the hand-arm vibration syndrome. Coughlin P, Chetter IC, Kent PJ, Kester RC; St James’s University Hospital, Leeds, UK.
BACKGROUND: The hand-arm vibration syndrome (HAVS) is the commonest prescribed disease in the UK . Presently the diagnosis is subjective and the need for an objective investigation to support the diagnosis has been highlighted. This study analyses the potential of cold provocation thermography (CPT) to fulfil this role. METHODS: CPT was performed in ten controls (five men, five women; median age 35 (range 24-78) years) and 21 patients with HAVS (20 men, one woman; median age 45 (range 29-81) years). With an infrared camera, a precooling (PC) image was taken and then, following hand cooling in water at a temperature of 5 degrees C for 1 min, further rewarming images were taken every minute for 10 min. RESULTS: Patient finger tip temperatures were significantly cooler than control temperatures at all time points (P < 0.01, Student’s t test). The following Table shows the sensitivity, specificity and PPV of CPT. CONCLUSION: CPT provides strong objective evidence to support the clinical diagnosis of HAVS.

Carpal Tunnel:
Pain 1995 Mar;60(3):295-302
Parameters of thick and thin nerve-fiber functions as predictors of pain in carpal tunnel syndrome.
Neundorfer B, Handwerker HO; Neurologische Klinik, Lang E, Claus D, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Germany.
Pain intensity in carpal tunnel syndrome (CTS) was correlated with neuro- and psychophysiological parameters related to the function of different nerve fiber classes within the median nerve in 23 patients. Control data were obtained from 16 normal subjects. Mean intensity of all pain attacks which occurred 14 days before surgical treatment was assessed on visual analogue scales (average CTS pain). Functions of thick myelinated nerve fibers were determined by motor and sensory nerve conduction studies. Functions of thin myelinated and unmyelinated nerve fibers were evaluated by measuring thresholds of warmth, cold and heat pain on the index and little finger. Pain intensity and neurogenic vasodilatation following noxious mechano-stimulation on the interdigital web between index and middle finger provided additional information on the functioning of nociceptive nerve fibers. Sympathetic reflexes induced by these painful stimuli were assessed by means of infrared thermography and photoplethysmography. Mean intensity of pain attacks (40 +/- 19% VAS) correlated significantly with latency (r = 0.58, P < 0.01) and amplitude (r = -0.50, P < 0.01) of the compound action potential from abductor pollicis brevis muscle following distal median nerve stimulation. Thresholds of warmth, cold and heat pain on index finger were significantly increased during CTS when compared to the control subjects. The magnitude of neurogenic vasodilatation and sympathetic vasoconstrictor reflexes were not significantly different. Average CTS pain correlated inversely to the threshold of heat pain on index (r = -0.46, P < 0.05), but also on the little finger (r = -0.41, P < 0.05), which is not innervated by the median nerve.

Open Heart Surgery:
 
Med Eng Phys 1998 Sep;20(6):443-51
Thermographic imaging in the beating heart: a method for coronary flow estimation based on a heat transfer model.
Gordon N, Rispler S, Sideman S, Shofty R, Beyar R; Heart System Research Center, Department of Biomedical Engineering, Technion-IIT, Haifa, Israel.
Intraoperative thermographic imaging in open-chest conditions can provide the surgeon with important qualitative information regarding coronary flow by utilizing heat transfer analysis following injection of cold saline into the aortic root. The heat transfer model is based on the assumption that the epicardial temperature changes are mainly due to convection of heat by the blood flow, which may, therefore, be estimated by measuring the temperature variations. Hearts of eight dogs were exposed and imaged by a thermographic camera. Flow in the left arterial descending (LAD) coronary branch was measured by a transit-time flowmeter. 20 ml of cold saline were injected into the aortic root (just after the aortic valve) and the epicardial temperature images were recorded at end-diastole, for 20-30 s. Different flow rates were achieved by 1 min occlusion of the LAD, which affected a reactive hyperemic response. The dynamics of the temperature in the arterial coronary tree was obtained by averaging the temperature over an edge-detected arterial segment for each frame. The heat transfer equation was curve-fitted, and the flow-dependent heat transfer index was correlated with the experimentally determined coronary flow (r = 0.69, p < 0.001). In summary: a method for quantitative estimation of coronary blood flow by thermography and heat transfer analysis was developed and tested in animal experiments. This method can provide important information regarding coronary blood flow during open-chest surgical procedures.

Cardiovasc Intervent Radiol 1998 Nov-Dec;21(6):481-6
 
Can rotational atherectomy cause thermal tissue damage? A study of the potential heating and thermal tissue effects of a rotational atherectomy device.
Gehani AA, Rees MR; Cardiac Research Unit, Killingbeck Hospital , Leeds , United Kingdom .
PURPOSE: Thermal tissue damage (TTD) is customarily associated with some lasers. The thermal potential of rotational atherectomy (RA) devices is unknown. We investigated the temperature profile and potential TTD as well as the value of fluid flushing of an RA device. METHODS: We used a high-resolution infrared imaging system that can detect changes as small as 0.1 degree C to measure the temperature changes at the tip of a fast RA device with and without fluid flushing. To assess TTD, segments of porcine aorta were subjected to the rotating tip under controlled conditions, stained by a special histochemical stain (picrisirius red) and examined under normal and polarized light microscopy. RESULTS: There was significant heating of the rotating cam. The mean “peak” temperature rise was 52.8 +/- 16.9 degrees C. This was related to rotational speed; thus the “peak” temperature rise was 88.3 +/- 12.6 degrees C at 80,000 rpm and 17.3 +/- 3.8 degrees C at 20,000 rpm (p < 0.001, t-test). Fluid flushing at 18 ml/min reduced, but did not abolish, heating of the device (11.8 +/- 2.9 degrees C). A crater was observed in all segments exposed to the rotating tip. The following features were most notable: (i) A zone of “thermal” tissue damage extended radially from the crater reaching adventitia in some sections, especially at high speeds. This zone showed markedly reduced or absent birefringence. (ii) Fluid flushing of the catheter reduced the above changes but increased the incidence and extent of dissections in the media, especially when combined with high atherectomy speeds. (iii) These changes were observed in five of six specimens exposed to RA without flushing, but in only one of six with flushing (p < 0.05). (iv) None of the above changes was seen in control segments. CONCLUSION: RA is capable of generating significant heat and potential TTD. Fluid flushing reduced heating and TTD. These findings warrant further studies in vivo, and may influence the design of atherectomy devices.

 

 

Uterine Cervix
 
Ginekol Pol 1998 Dec;69(12):1268-72
[Infrared thermographic imaging of normal vulva and
uterine cervix: a preliminary report].
[Article in Polish] Sikorski R, Smaga A, Paszkowski T, Walczak R; Kliniki Ginekologii II Katedry Poloznictwa i Chorob Kobiecych Wydzialu Lekarskiego AM w Lublinie.
OBJECTIVES: To evaluate in the standardized conditions the thermal emission by normal uterine cervix and vulva. MATERIALS AND METHODS: Infrared telethermography (ITT) was used to examine vulva and uterine cervix in 32 women aged 24-54 years without colposcopic and cytologic abnormalities. RESULTS: The measured temperatures differed between different topographic points of vulva and uterine vaginal portio. The inter-individual variability of temperatures determined at the same vulvar structures was relatively low. CONCLUSION: The obtained results constitute a basis for further studies on thermovisual definition of therapeutic targets in cases of vulvar and cervical lesions.Deep Vein Thrombosis:
 
Proceedings – 19th International Conference – IEEE/EMBS Oct. 30-Nov. 2, 1997 Chicago , IL
Is DVT Excluded by Normal Thermal Imaging? – An Outcome Study of 700 Cases.
Harding, J. Richard; Barnes, Kathryn M.; Department of Clinical Radiology, St Woolos Hospital, Glan Hafren NHS Trust, Newport, Gwent, U.K.
In view of the many advantages compared with venography or Doppler ultrasound, and the ability to avoid the necessity for over one third of these investigations, thermal imaging should be considered the initial investigation of choice in clinically suspected DVT, proceeding to venography or Doppler ultrasound only when thermal imaging is positive. There are risks and disadvantages to the most commonly utilised conventional tests for DVT, over one third of which examinations can be avoided by performing thermal imaging as the initial investigation, which excludes DVT when normal. This outcome study followed up patients with clinically suspected DVT who were not further investigated or treated following normal thermal imaging, and showed that no patients developed PE (pulmonary embolism) following normal thermography with no further investigation for DVT and withholding of anticoagulant therapy.

Dentistry:
 
Eur J Orthod 1999 Apr;21(2):111-8
Thermal image analysis of electrothermal debonding of ceramic brackets: an in vitro study.
Cummings M, Biagioni P, Lamey PJ, Burden DJ; Division of Orthodontics, School of Clinical Dentistry, Queen’s University of Belfast, UK.
This study used modern thermal imaging techniques to investigate the temperature rise induced at the pulpal well during thermal debonding of ceramic brackets. Ceramic brackets were debonded from vertically sectioned premolar teeth using an electrothermal debonding unit. Ten teeth were debonded at the end of a single 3-second heating cycle. For a further group of 10 teeth, the bracket and heating element were left in contact with the tooth during the 3-second heating cycle and the 6-second cooling cycle. The average pulpal wall temperature increase for the teeth debonded at the end of the 3-second heating cycle was 16.8 degrees C. When the heating element and bracket remained in contact with the tooth during the 6-second cooling cycle an average temperature increase of 45.6 degrees C was recorded.

Dentomaxillofac Radiol 1998 Mar;27(2):68-74
Thermology and facial telethermography: Part II. Current and future clinical applications in dentistry.
Gratt BM, Anbar M Section of Oral Radiology, UCLA School of Dentistry 90095-1668, USA.
Selected clinical applications using thermal imaging as an aid in dentistry are reviewed. Facial skin temperature can easily be measured in a clinical setting, without direct skin contact, by monitoring the emitted infrared radiation. This is the basis of static area telethermography (SAT) and dynamic area telethermography (DAT). SAT has recently been shown to be of help to the dentist in (1) the diagnosis of chronic orofacial pain, (2) as a unique tool in assessment of TMJ disorders, (3) as an aid in assessment of inferior alveolar nerve deficit, and (4) as a promising research tool. DAT, recently made possible by advances in computing technology combined with advanced infrared sensor technology, extracts quantitative information about hemodynamic processes from hundreds to thousands of digital thermal images of the affected facial areas, measured and collected within less than 3 min. DAT has promise of offering a better insight into aberrations of the neuronal control of facial skin perfusion and aiding our understanding of the correlation between orofacial pain and facial thermal abnormalities. This promising new insight may help in the management of orofacial pain.

Acupuncture:
 
Journal of Traditional Chinese Medicine, 1991 Jun, 11(2):139-45
Peripheral facial paralysis aided by infrared thermography.
We have carried out clinical observations on 34 patients with peripheral facial paralysis treated by acupuncture therapy prescribed according to selection of treatment regimen on the basis of facial thermogram and temperature. A comparison was made with a control group of 97 patients who received conventional acupuncture therapy only. It was found that: (1) The cure rate in the group of selecting acupoints by thermogram (hereinafter referred to as the thermography–aided treatment group) was 67.65%, with a marked improvement rate of 26.40%; while the cure rate of the conventional acupuncture treatment group (hereinafter called the conventional treatment group) was 46.39%, the marked improvement rate being 29.90%, indicating a significant difference in therapeutic efficacy between the two groups (P less than 0.02). (2) The average duration of acupuncture therapy for the thermography aided treatment group was 6.02 weeks, whereas that for the conventional treatment group, 24 weeks. There was also a significant difference between the two groups (p less than 0.01). (3) During the entire therapeutic course, 25.2 sessions of treatment were given on the average in the thermography–aided treatment group, and 78.8 sessions in the conventional treatment group, showing a very significant difference (P less than 0.001). The present thermography–aided method exhibits advantages over the conventional one in enhancing the cure rate and shortening the duration of treatment, which is worthy to be popularized in clinical practice. It is also of certain significance in standardization and scientification of acupuncture therapy. Zhang D; Wei Z; Wen B; Gao H; Peng Y; Wang F.

Med Biol Eng Comput 2000 Jan;38(1):31-4
Analysis of thermal properties of wheelchair cushions with thermography.
Ferrarin M, Ludwig N; Centro di Bioingegneria, Fondazione Don Carlo Gnocchi, IRCCS-Politecnico di Milano, Italy . ferramau@mail.cbi.polimi.it
Thermal properties of wheelchair cushions have been traditionally studied with thermistor probes, which provide temperature values of limited areas (spot analysis). In this paper, we describe a novel procedure based on thermography for assessing the distribution of temperature over the entire surface of wheelchair cushions. The thermal transient during contact with the body (heating phase) and after use (cooling phase) is considered. The procedure was tested in four different seat cushions (with a gel pad, air-filled cells, gel-filled bubbles and foam-filled bubbles) used by a normal subject. Observed results were compatible with the predicted outcomes based on an analysis of the materials and structures. Specifically: (i) air-filled cushions exhibited the fastest thermal transients, gel cushions the slowest transients, while cushions with a mixed structure exhibited intermediate behaviour; (ii) cushions made from flat surfaces of foam exhibited the highest peak temperatures (30.8 degrees C) as compared to those with air-filled cells (30.35 degrees C) or bubble-shaped surfaces (29.7 degrees C); (iii) the average temperature under the thighs was significantly higher than that under the ischiatic area in all cushions (29.6 degrees C compared with 28.7 degrees C, p < 0.05). It is shown that the present method can be used to differentiate between different cushions. Although the ‘macro-analysis’ inherent in thermography appears to be suited for improving cushion design, this approach should be further investigated to determine its reliability.

Brain sections:
 
APMIS, 1997 Oct; 105(10):801-805
Infrared imaging of human brain sections. A new biomedical application of the thermocamera.
Human brains, removed at routine autopsy, were subjected to neuropathological investigation. The usual gross morphological investigation of the brains was extended to include the detection of their infrared emissions. Fundamental structures, such as the grey and white matter, were separated on the infrared images. Furthermore, pathological processes, such as ischaemic damage, haemorrhage, and sclerotic plaques, hardly seen on the normal photographs, gave a strong signal on the infrared pictures. These pilot experiments demonstrated that infrared detection is a reproducible method in this type of biomedical application, and potentially a very useful tool in macroscopic pathology. Gati I, Papp L, Polgar T, Department of Neurology, University of Pecs Medical School, Hungary.

Burns, plastic surgery:
 
Burns, 1996 Feb;22(1):26-28
Timing of the thermographic assessment of burns. The thermographic assessment of burns using infrared imaging has previously been shown to be a useful aid in the estimation of burn depth. In this study, thermographic images of burns, obtained from 65 patients over a 4-year period, were reviewed. … The results of this study suggest that thermography of burns, to assess depth, should be performed within 3 days following the injury.

Annals of Plastic Surgery, 1995 May;34(5):507-11.
Recovery enhanced thermography (preapplication of ice followed by image of response) to localize cutaneous perforators. Conclusion: clinically, preoperative recovery-enhanced thermography is useful for the design of perforator-based flaps.

Burns, 1991 Apr;17(2):117-22.
Thermographic assessment of burns using a nonpermeable membrane as wound covering. Thermographic assessment of damage to skin blood vessels caused by thermal injury correlates with healing time of burn wounds. NOTE: clever technique of using PVC film (Saran Wrap or Glad Wrap) shown to abolish the artifacts of evaporative water loss from the wound without interfering with surface imaging.

Burns, 1993 Jun;19(3):187-91.
IV Pluronic F-127 in early burn wound treatment in rats.The non-ionic surfactant Pluronic F-127 shows a positive therapeutic effect on wound closure rates and healing. Between 90 min. and 48 hours postinjury, thermography showed the alterations in the F-127 treated injuries.